Teoremay aplicación. Si h denota la altura de un triángulo rectángulo perpendicular a la hipotenusa, y p y q los segmentos en los que divide a hipotenusa, entonces el teorema puede expresarse como: = o en términos de áreas: =. La última fórmula permite obtener un método para determinar la cuadratura de un rectángulo utilizando regla y compás, es
Paracalcular el área de estos triángulos, podemos usar la longitud de su base y la longitud de su altura. Entonces, encontramos el área al dividir por 2 al producto de la altura y la base. A continuación, conoceremos la fórmula del área de un triángulo rectángulo. Además, usaremos esta fórmula para resolver algunos ejercicios.Podemoscalcular la longitud de la altura de triángulos equiláteros usando la siguiente fórmula: h=\frac {\sqrt {3}~a} {2} h = 23 a. en donde, a es la longitud de uno de los lados del triángulo equilátero. Entonces, para determinar la altura de un triángulo equilátero, solo tenemos que conocer la longitud de uno de sus lados.
EKojG. 311 221 369 342 314 269 307 495 55